Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Acc Chem Res ; 54(24): 4508-4517, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1556900

ABSTRACT

Self-disinfecting surfaces are a current pressing need for public health and safety in view of the current COVID-19 pandemic, where the keenly felt worldwide repercussions have highlighted the importance of infection control, frequent disinfection, and proper hygiene. Because of its potential impact upon real-world translation into downstream applications, there has been much research interest in multiple disciplines such as materials science, chemistry, biology, and engineering. Various antimicrobial technologies have been developed and currently applied on surfaces in public spaces, such as elevator buttons and escalator handrails. These technologies are mainly based on conventional methods of grafting quaternary ammonium salts (QACs) such as benzalkonium chloride or the immobilization of metal species of silver or copper. However, neither the long-term efficacy nor the fast-killing properties have been proven, and the future repercussions from extended use, such as environmental hazards and the induction of MDR development, is unknown. Nanostructured surfaces with excellent antimicrobial activities have been claimed to be the next generation of self-disinfecting surfaces with various promising applications and passive antimicrobial mechanisms, without the potential repercussions of active ingredient overuse. In this Account, we briefly introduce the concept of mechanobactericidal action realized by these nanostructured surfaces first discovered on cicada wings. The elimination of microbes on the surface was actualized by the physical rupture of the microbe cell wall by nanoprotusions, without any involvement of chemical species. By mimicking the physical features of naturally occurring biocidal surfaces, the fabrication of nanostructures on various substrates such as titania, silicon, and polymers has been well described. Observations of the dependence of their antimicrobial efficacy on physical characteristics such as height, density, and rigidity have also been documented. However, the complex fabrication of such nanostructures remains the main drawback preventing its widespread application. We outline our efforts in fabricating a series of zinc-based nanostructured materials with facile and generally applicable wet chemistry methods, including nanodaggered zeolitic imidazolate frameworks (ZIF-L) and ZnO nanoneedles. In our investigations, we discovered that there were additional modes of action that contributed to the excellent biocidal activities of our materials. The impact of surface chemistry and charge was partially responsible for the selectivity and efficacy of ZIF-L-coated surfaces, where the positively charged surfaces were able to attract and adhere negatively charged bacteria to the surface. The combination of semiconductor ZnO nanoneedles on electron-donating substrates allowed for the generation of reactive oxygen species (ROS), realizing the remote killing of bacteria unadhered to the nanostructured surface. Additionally, we demonstrate several real-life applications of the synthesized materials, underscoring the importance of materials development suited for scale-up and eventual translation to potential applications and commercial end products.


Subject(s)
Anti-Infective Agents , COVID-19 , Nanostructures , Animals , Anti-Infective Agents/pharmacology , Humans , Pandemics , SARS-CoV-2 , Surface Properties
2.
ChemMedChem ; 16(23): 3553-3558, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1437037

ABSTRACT

In the search for a fast contact-killing antimicrobial surface to break the transmission pathway of lethal pathogens, nanostructured copper surfaces were found to exhibit the desired antimicrobial properties. Compared with plain copper, these nanostructured copper surfaces with Cu(OH)2 nano-sword or CuO nano-foam were found to completely eliminate pathogens at a fast rate, including clinically isolated drug resistant species. Additionally these nanostructured copper surfaces demonstrated potential antiviral properties when assessed against bacteriophages, as a viral surrogate, and murine hepatitis virus, a surrogate for SARS-CoV-2. The multiple modes of killing, physical killing and copper ion mediated killing contribute to the superior and fast kinetics of antimicrobial action against common microbes, and ESKAPE pathogens. Prototypes for air and water cleaning with current nanostructured copper surface have also been demonstrated.


Subject(s)
Bacteria/drug effects , Copper/chemistry , Hepatitis Viruses/drug effects , Hydroxides/chemistry , Nanostructures/toxicity , SARS-CoV-2/drug effects , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Copper/pharmacology , Drug Resistance, Bacterial/drug effects , Mice , Microbial Sensitivity Tests , Nanostructures/chemistry , Surface Properties
3.
Glob Chall ; 5(11): 2100030, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1335995

ABSTRACT

To curb the spread of the COVID-19 virus, the use of face masks such as disposable surgical masks and N95 respirators is being encouraged and even enforced in some countries. The widespread use of masks has resulted in global shortages and individuals are reusing them. This calls for proper disinfection of the masks while retaining their protective capability. In this study, the killing efficiency of ultraviolet-C (UV-C) irradiation, dry heat, and steam sterilization against bacteria (Staphylococcus aureus), fungi (Candida albicans), and nonpathogenic virus (Salmonella virus P22) is investigated. UV-C irradiation for 10 min in a commercial UV sterilizer effectively disinfects surgical masks. N95 respirators require dry heat at 100 °C for hours while steam treatment works within 5 min. To address the question on safe reuse of the disinfected masks, their bacteria filtration efficiency, particle filtration efficiency, breathability, and fluid resistance are assessed. These performance factors are unaffected after 5 cycles of steam (10 min per cycle) and 10 cycles of dry heat at 100 °C (40 min per cycle) for N95 respirators, and 10 cycles of UV-C irradiation for surgical masks (10 min per side per cycle). These findings provide insights into formulating the standard procedures for reusing masks without compromising their protective ability.

SELECTION OF CITATIONS
SEARCH DETAIL